WHITE SANDS SPACE HARBOR AREA 1, RUNWAY 23/05 HAER No. NM-28-B
(Space Shuttle Landing Facility Area 1, Runway 23/05)
White Sands Missile Range
Extending 35,000 feet in a southwest/northeast direction, intersecting with Runway 17/35 to form an X-shaped footprint
White Sands vicinity
Doña Ana County
New Mexico

PHOTOGRAPHS

WRITTEN HISTORICAL AND DESCRIPTIVE DATA

Historic American Engineering Record
National Park Service
U.S. Department of the Interior
Intermountain Regional Office
12795 Alameda Parkway
Denver, CO 80225-0287
Location: White Sands Missile Range
Extending 35,000' in a southwest/northeast direction, intersecting with Runway 17/35 to form an X-shaped footprint
White Sands vicinity
Doña Ana County
New Mexico

U.S.G.S. 7.5 Minute Las Cruces, New Mexico, Quadrangle, Universal Transverse Mercator Coordinates (center of runways): E 32.944408 N 106.41993 Zone 13S, NAD 1983.

Construction: 1977-1978

Architect: Not known

Builder: Not known

Present Owner: Commander, U.S. Army White Sands Missile Range, New Mexico 88002-5018

Present Use: Vacant

Significance: Runway 23/05 was an essential component of the White Sands Space Harbor (WSSH) from 1976-2011. It has a direct association with the U.S. Space Shuttle Program (SSP) as the site of the landing of Space Transportation System (STS)-3 Columbia in March 1982; this is the only STS landing to take place outside Edwards Air Force Base in California and Kennedy Space Center in Florida. Runway 23/05 is considered to have national significance and is eligible for listing in the National Register of Historic Places (NRHP) under Criterion A for its association with the NASA SSP with a period of significance of 1976-2011. Because it
achieved significance within the past fifty years, Criterion Consideration G also applies.

Report
Prepared by: Robbie D. Jones, Senior Historian
New South Associates
118 South 11th Street
Nashville, TN 37206

Date: September 2013

LIST OF ACRONYMS

ABGR Alamogordo Bombing and Gunnery Range
ABS Anti-lock Braking System
ACHP Advisory Council on Historic Preservation
ACI Archaeological Consultants, Inc.
AIAA American Institute of Aeronautics and Astronautics
APE Area of Potential Effects
ATC Air Traffic Control
BTT Basic Training Target
CCC Civilian Conservation Corps
CIT California Institute of Technology
CONEX Container Express
DC-X Delta Clipper, Experimental
DoD Department of Defense
GPS Global Positioning System
HAFB Holloman Air Force Base
HPO Historic Preservation Officer
HPWG Historic Preservation Working Group
HUB Harbor Utility Building
IGS Inter Glide Slope
IHA InoMedic Health Applications, LLC
JSC Johnson Space Center
KSC Kennedy Space Center
LC Launch Complex
MD McDonnell Douglas
MSBLS Microwave Scanning Beam Landing System
MSFC Marshall Space Flight Center
NASA National Aeronautics and Space Administration
NAVAIDS Navigational Aids
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEPA</td>
<td>National Environmental Policy Act</td>
</tr>
<tr>
<td>NHL</td>
<td>National Historic Landmark</td>
</tr>
<tr>
<td>NHPA</td>
<td>National Historic Preservation Act</td>
</tr>
<tr>
<td>NPS</td>
<td>National Park Service</td>
</tr>
<tr>
<td>NRHP</td>
<td>National Register of Historic Places</td>
</tr>
<tr>
<td>NSA</td>
<td>New South Associates</td>
</tr>
<tr>
<td>OCC</td>
<td>Operations Control Center</td>
</tr>
<tr>
<td>ORD</td>
<td>Army Ordinance Department</td>
</tr>
<tr>
<td>PAPI</td>
<td>Precision Approach Path Indicator</td>
</tr>
<tr>
<td>RFP</td>
<td>Request for Proposal</td>
</tr>
<tr>
<td>SCAPE</td>
<td>Self Contained Atmospheric Protective Ensemble</td>
</tr>
<tr>
<td>SHPO</td>
<td>State Historic Preservation Officer</td>
</tr>
<tr>
<td>SSP</td>
<td>Space Shuttle Program</td>
</tr>
<tr>
<td>SSRT</td>
<td>Single Stage Rocket Technology</td>
</tr>
<tr>
<td>STA</td>
<td>Shuttle Training Aircraft</td>
</tr>
<tr>
<td>STS</td>
<td>Space Transportation System</td>
</tr>
<tr>
<td>TACAN</td>
<td>Tactical Air Navigation</td>
</tr>
<tr>
<td>TAL</td>
<td>Transoceanic Abort Landing</td>
</tr>
<tr>
<td>UHF</td>
<td>Ultrahigh Frequency</td>
</tr>
<tr>
<td>USAAF</td>
<td>United States Army Air Force</td>
</tr>
<tr>
<td>USAF</td>
<td>United States Air Force</td>
</tr>
<tr>
<td>VITT</td>
<td>Vehicle Integration Test Team</td>
</tr>
<tr>
<td>WPA</td>
<td>Works Progress Administration</td>
</tr>
<tr>
<td>WSMR</td>
<td>White Sands Missile Range</td>
</tr>
<tr>
<td>WSNM</td>
<td>White Sands National Monument</td>
</tr>
<tr>
<td>WSPG</td>
<td>White Sands Proving Ground</td>
</tr>
<tr>
<td>WSSH</td>
<td>White Sands Space Harbor</td>
</tr>
<tr>
<td>WSTF</td>
<td>White Sands Test Facility</td>
</tr>
</tbody>
</table>
PART I. HISTORICAL INFORMATION

A. PHYSICAL HISTORY

1. DATE OF CONSTRUCTION

Runway 23/05 was constructed from 1977-1978.

2. ENGINEER

Not known.

3. BUILDER/CONTRACTOR/SUPPLIER

Not known.

4. ORIGINAL PLANS

Not available.

5. ALTERATIONS AND ADDITIONS

The Runway is constructed of a compacted, natural gypsum surface and has been upgraded with modern navigational aids such as lighting and asphalt directional markings.

Once the runway was abandoned in 2011, routine maintenance ceased. Due to the harsh desert environment, the runway began to deteriorate quickly. The U.S. Army initiated occupation of WSSH in the summer of 2012.
PART II. STRUCTURAL/DESIGN INFORMATION

A. GENERAL DESCRIPTION

1. CHARACTER

Located in Area 1, the three natural surface gypsum runways, including Runway 23/05, are located within a 10-square mile area at WSSH. The runways are constructed of compacted gypsum sand with a 1-2" thick soft top layer and a hard-paced under layer. Due to the harsh desert environment, the runways required constant grading, repairs, and maintenance.

Each of the three runways duplicates a shuttle landing runway: 17/35 replicates the runway at Kennedy Space Center in Florida; 23/05 replicates the runway at Edwards Air Force Base in California; and 20/02 replicates the Transoceanic Abort Landing (TAL) runways in other countries.

Runways 17/35 and 23/05 cross each other at their approximate center lines, creating an X shaped site plan. Runway 17/35 is oriented along the north-south axis and 23/05 along the east-west axis. Both runways are 15,000' in length with 10,000' overruns at either end. Both runways are 300' wide with 300' wide shoulders flanking both sides. Navigational aids such as lighting and markings made of asphalt are located along the entire length of both runways.

At 1,000' into the overruns at runways 17 and 23 are two portable xenon light trailers, one on each side of the runway. At 7,500' into each overrun are the Nominal Aimpoints; at 6,500' into the overruns are the High-Wind Aimpoints. Both High-Wind Aimpoints in Runway 17/35 and the east Aimpoint of Runway 23/05 contain PAPI lights. At 2,000' into the actual runways, at each end, are Inner Glide Slope (IGS) Indicator Bar/Ball lights, except on Runway 05.

Runway 20/02 is located in the northwest quadrant created by the intersection of Runways 17/35 and 23/05. Runway 20/02 is oriented along a northeast-southwest axis and measures 19,800' in length and 200' in width. This runway does not feature overruns.
Navigational aids such as lighting and markings made of asphalt are located along its entire length. This runway does not have maintained overruns.

At 6,500' from the northeast end of runway 20 is the Nominal Aimpoint and at 5,500' is the High-Wind Aimpoint with PAPI lights. At 2,000' into the runway at the northeast end are the IGS Bar/Ball lights.

Within the northwest quadrant of the intersection of Runway 17/35 and 23/05 is a Helicopter Staging Area, consisting of a natural surface landing pad for eight helicopters. The pad features a row of H-shaped markings made of asphalt.

A shuttle towway, approximately 400' wide and constructed of compacted natural surface gypsum, begins at the southern terminus of Runway 17/35 and continues southwest along Range Road 10 where it terminates at the Deservice Pad in Area 2.

2. DESCRIPTION

The following is a more detailed description of Runway 23/05, also known as “Edwards.”

Runway 23/05 is 35,000' long and 900' wide runway with runway markings and navigational aids, including: two sets of Precision Approach Path Indicator (PAPI) lights, IGS Ball/Bar lights, touchdown markers, distance-to-go markers, xenon lights, nominal night strobes, and runway side lights.

Runway 23/05 was constructed from 1977-1978 to replicate the runway located at the Edwards Air Force Base near Los Angeles, California. The runway was improved in 1992 with upgraded navigational aids such as lighting.

Once the decision was made in 1984 for the Orbiter to land regularly at KSC, Edwards AFB became the primary backup and WSSH would be used only in the event that the shuttle could not land at KSC or Edwards AFB. After 1984, the primary use of the runways at WSSH was astronaut training, allowing pilots to become
familiar with the Orbiter’s primary backup landing site at Edwards AFB.

3. CONDITION OF FABRIC

When documented in March 2012, the Runway had been abandoned for over six months and was in fair condition. Due to the harsh desert environment and lack of maintenance, the runway had quickly deteriorated due to shifting sands, flash floods, and extreme temperature variations.

B. CONSTRUCTION

The Runway is constructed of compacted natural surface gypsum with landing aid markings made of asphalt.

C. MECHANICAL/OPERATION

The Runway does not feature any mechanical equipment, with the exception of navigational aids, which are documented separately.
PART III. SOURCES OF INFORMATION

A. ENGINEERING PLANS AND DRAWINGS

There are no known engineering plans or drawings of the Runway, however, plans were created around 1988 for construction of the asphalt navigational markings.

B. EARLY VIEWS AND HISTORICAL DATA

Historic photographs and maps of the WSSH, including the Runways, are very limited. Some of these views can be found on pages 21, 24, and 25 of this document. All views are captioned and dated as available. The other historical data comes from a variety of sources cited in the Bibliography below.

The historic photographs and most of the historical data used in this documentation came from sources within WSTF and WSSH. Other more current imagery was obtained from the online WSTF Media Archive. Many of the original photographs have been donated to the WSMR Museum for digitization and curation. A body of recent aerial photographs were located and photocopied for inclusion in the HAER document to supplement the current ground photography.

C. INTERVIEWS

The following NASA and WSMR employees were interviewed for this documentation.

Robert E. Mitchell, WSTF Manager, September 2011.

Frank Offutt, WSSH Manager, September 2011.

Timothy Davis, WSTF Historic Preservation Officer, September 2011 and March 2012.

Bill Godby, WSMR Historic Preservation Officer, September 2011.

Doyle Piland, WSMR Museum Archivist, September 2011.
D. BIBLIOGRAPHY

__________. “NASA-Wide Survey and Evaluation of Historic Facilities in the Context of the U.S. Space Shuttle

United States Army. “Final Environmental Impact Statement for Development and Implementation of Range-Wide Mission and Major Capabilities at White Sands Missile Range,

E. LIKELY SOURCES NOT YET INVESTIGATED

Research was conducted at WSSH and WSTF using primary and secondary sources. Sources that were not investigated that may contain secondary information are archived at NASA’s Lyndon B. Johnson Space Center in Houston, Texas.

Additional oral history interviews with other engineers and technicians could also prove useful.
In 2011-2012, New South Associates (NSA), under contract with InoMedic Health Applications, LLC (IHA) of Kennedy Space Center, Florida, and in coordination with NASA and the U.S. Army, conducted background research and a historic architecture survey of resources at the NASA WSSH. The survey included the documentation and evaluation for NRHP eligibility for seventy-two resources located in four distinct areas. Based on this research, NSA determined that no properties remain at WSSH from the period prior to NASA acquisition in 1963 except for the footprint of the packed gypsum Runway 17/35.1

NSA recommended that the three NASA WSSH Runways and the Control Tower in Area 1 were individually eligible for listing in the NRHP and eligible as contributing resources to the “WSSH Shuttle Landing Facility District” under Criterion A and Criterion Consideration G for their association with the NASA SSP. None of the other sixty-eight inventoried properties were recommended individually eligible for listing in the NRHP due to lack of historical association with the NASA SSP or other historic contexts, lack of unique design or construction features, or insufficient integrity; however, nineteen of these properties, all of which lie within Area 1, were recommended as contributing resources to “WSSH Shuttle Landing Facility District,” even though they were not recommended individually eligible for the NRHP. The historic district contains a total of twenty-eight resources: twenty-three are contributing and five are non-contributing.

After formally ending the SSP on August 31, 2011, NASA disposed of the WSSH and released use of the property to the U.S. Army WSMR. The property transfer was a federal undertaking on federally-owned property and subject to compliance with Section 106 of the NRHP Act of 1966, as amended. The undertaking resulted in an Adverse Effect to the NRHP-eligible WSSH Shuttle

Landing Facility District. To mitigate the adverse effects, NASA completed HAER Level II documentation of the historic district and relocated the Control Tower to the WSMR Museum for conservation, exhibition, and public interpretation.

The mitigation plan was defined in a Memorandum of Agreement (MOA), executed between NASA, the U.S. Army, and the NM-SHPO in August 2012. The properties within the historic district were documented with large format photography in March 2012.
APPENDIX - LOCATION MAPS AND HISTORICAL VIEWS
Figure 1. Map of White Sands Military Reservation showing White Sands Space Harbor (Source: U.S. Army).
Figure 2. Map of White Sands Space Harbor showing location of Runway 23/05 in Area 1, which delineates the NRHP boundaries of the WSSH Shuttle Landing Facility District (Base Map Source: NASA WSTF).
Figure 3. Map of WSSH showing location of all three of the Runways, with latitude and longitude, 2008 (Source: NASA WSTF).
Figure 4. Map of WSSH, drawn by J.A. "Andy" Dorris under the direction of NASA engineer Dennis Perrin on March 7, 1980, showing location of Runway 17/35 and Runway 23/05 (Source: NASA WSTF).
Figure 5. Map of Runways, USGS Topographic Map, 1978.
Figure 6. Aerial view of a runway showing “Normal Aimpoint” Markings, November 1999 (Source: NASA WSTF).
Figure 7. Drawing of Runway 23/05 Landing Aids Markings, ca.1988 (Source: NASA WSTF).
Figure 8. Drawing of Runway Landing Aids Markings, ca.1988
(Source: NASA WSTF).
Figure 9. Aerial view of Runway 23/05, looking Southwest towards the San Andres Mountain Range, April 2007 (Source: NASA WSTF).
Figure 10. Aerial view of Intersection of Runways 17/35 and 23/05, looking West towards the San Andres Mountain Range, June 2006 (Source: NASA WSTF).
WHITE SANDS SPACE HARBOR AREA 1, RUNWAY 23/05
(Space Shuttle Landing Facility Area 1, Runway 23/05)
White Sands Missile Range
Extending 35,000 feet in a southwest/northeast direction, intersecting
with Runway 17/35 to form an X-shaped footprint
White Sands vicinity
Doña Ana County
New Mexico

David Diener, Photographer
March 27-29, 2012

NM-28-B-1 CONTEXT VIEW OF RUNWAYS LOOKING NORTHWEST TOWARDS
SAN ANDRES MOUNTAINS FROM OPERATIONS CONTROL CENTER
(AREA 3).

NM-28-B-2 CONTEXT VIEW OF RUNWAYS LOOKING EAST FROM ATOP
ABANDONED U.S. ARMY WSMR BUNKER AT WEST END OF RUNWAY
23/05 TOWARDS HUB COMPLEX WITH SACRAMENTO MOUNTAINS IN
BACKGROUND.

NM-28-B-3 VIEW OF RUNWAY 23/05 LOOKING NORTHEAST FROM WEST END
WITH ASPHALT “5” MARKING IN FOREGROUND AND SACRAMENTO
MOUNTAINS IN BACKGROUND.

NM-28-B-4 VIEW OF RUNWAY 23/05 LOOKING WEST FROM EAST END AT
EDGE OF SAND DUNES WITH ASPHALT “23” MARKING IN
FOREGROUND AND SAN ANDRES MOUNTAINS IN BACKGROUND.

NM-28-B-5 VIEW OF RUNWAY 23/05 LOOKING EAST FROM CENTER OF
INTERSECTION OF RUNWAYS 17/35 AND 23/05 WITH ASPHALT
EDGE MARKING IN FOREGROUND AND SACRAMENTO MOUNTAINS IN
BACKGROUND.

NM-28-B-6 VIEW OF RUNWAY 23/05 LOOKING WEST FROM CENTER OF
INTERSECTION OF RUNWAYS 17/35 AND 23/05 WITH ASPHALT
EDGE MARKING IN FOREGROUND AND SAN ANDRES MOUNTAINS IN
BACKGROUND.