WHITE SANDS SPACE HARBOR AREA 1, HAER No. NM-28-N
PAPI CONTROL BUILDING
(Space Shuttle Landing Facility Area 1, Precision Approach Path Indicator Building)
White Sands Missile Range
East side of south end of Runway 17/35
White Sands vicinity
Doña Ana County
New Mexico

PHOTOGRAPHS

WRITTEN HISTORICAL AND DESCRIPTIVE DATA

Historic American Engineering Record
National Park Service
U.S. Department of the Interior
Intermountain Regional Office
12795 Alameda Parkway
Denver, CO 80225-0287
Location: White Sands Missile Range
East side of south end of Runway 17/35
White Sands vicinity
Doña Ana County
New Mexico

U.S.G.S. 7.5 Minute Las Cruces, New Mexico, Quadrangle, Universal Transverse Mercator Coordinates (center of runways): E 32.944408 N 106.41993 Zone 13S, NAD 1983

Construction: ca.1992

Architect: Not known

Builder: Not known

Present Owner: Commander, U.S. Army White Sands Missile Range, New Mexico 88002-5018

Present Use: Vacant

Significance: The Precision Approach Path Indicator (PAPI) Control Building was an essential component of the White Sands Space Harbor (WSSH) from 1992-2011. It is considered to have national significance and is eligible for listing in the National Register of Historic Places (NRHP) under Criterion A for its association with the NASA Space Shuttle Program (SSP) with a period of significance of 1976-2011. Because it achieved significance within the past fifty years, Criterion Consideration G also applies.
LIST OF ACRONYMS

ABGR Alamogordo Bombing and Gunnery Range
ABS Anti-lock Braking System
ACHP Advisory Council on Historic Preservation
ACI Archaeological Consultants, Inc.
AIAA American Institute of Aeronautics and Astronautics
APE Area of Potential Effects
ATC Air Traffic Control
BTT Basic Training Target
CCC Civilian Conservation Corps
CIT California Institute of Technology
CONEX Container Express
DC-X Delta Clipper, Experimental
DoD Department of Defense
GPS Global Positioning System
HAFB Holloman Air Force Base
HPO Historic Preservation Officer
HPWG Historic Preservation Working Group
HUB Harbor Utility Building
IGS Inter Glide Slope
IHA InoMedic Health Applications, LLC
JSC Johnson Space Center
KSC Kennedy Space Center
LC Launch Complex
MD McDonnell Douglas
MSBLS Microwave Scanning Beam Landing System
MSFC Marshall Space Flight Center
NASA National Aeronautics and Space Administration
NAVAIDS Navigational Aids
NEPA National Environmental Policy Act
NHL National Historic Landmark
NHPA National Historic Preservation Act
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPS</td>
<td>National Park Service</td>
</tr>
<tr>
<td>NRHP</td>
<td>National Register of Historic Places</td>
</tr>
<tr>
<td>NSA</td>
<td>New South Associates</td>
</tr>
<tr>
<td>OCC</td>
<td>Operations Control Center</td>
</tr>
<tr>
<td>ORD</td>
<td>Army Ordinance Department</td>
</tr>
<tr>
<td>PAPI</td>
<td>Precision Approach Path Indicator</td>
</tr>
<tr>
<td>RFP</td>
<td>Request for Proposal</td>
</tr>
<tr>
<td>SCAPE</td>
<td>Self Contained Atmospheric Protective Ensemble</td>
</tr>
<tr>
<td>SHPO</td>
<td>State Historic Preservation Officer</td>
</tr>
<tr>
<td>SSP</td>
<td>Space Shuttle Program</td>
</tr>
<tr>
<td>SSRT</td>
<td>Single Stage Rocket Technology</td>
</tr>
<tr>
<td>STA</td>
<td>Shuttle Training Aircraft</td>
</tr>
<tr>
<td>STS</td>
<td>Space Transportation System</td>
</tr>
<tr>
<td>TACAN</td>
<td>Tactical Air Navigation</td>
</tr>
<tr>
<td>TAL</td>
<td>Transoceanic Abort Landing</td>
</tr>
<tr>
<td>UHF</td>
<td>Ultrahigh Frequency</td>
</tr>
<tr>
<td>USAAF</td>
<td>United States Army Air Force</td>
</tr>
<tr>
<td>USAF</td>
<td>United States Air Force</td>
</tr>
<tr>
<td>VITT</td>
<td>Vehicle Integration Test Team</td>
</tr>
<tr>
<td>WPA</td>
<td>Works Progress Administration</td>
</tr>
<tr>
<td>WSMR</td>
<td>White Sands Missile Range</td>
</tr>
<tr>
<td>WSNM</td>
<td>White Sands National Monument</td>
</tr>
<tr>
<td>WSPG</td>
<td>White Sands Proving Ground</td>
</tr>
<tr>
<td>WSSH</td>
<td>White Sands Space Harbor</td>
</tr>
<tr>
<td>WSTF</td>
<td>White Sands Test Facility</td>
</tr>
</tbody>
</table>
PART I. HISTORICAL INFORMATION

A. PHYSICAL HISTORY

1. DATE OF CONSTRUCTION

2. ENGINEER

Not known.

3. BUILDER/CONTRACTOR/SUPPLIER

Not known.

4. ORIGINAL PLANS

Not available.

5. ALTERATIONS AND ADDITIONS

All electronic equipment was removed once the facility was vacated in 2011. The U.S. Army initiated occupation and reuse of the facility in the summer of 2012.
PART II. STRUCTURAL/DESIGN INFORMATION

A. GENERAL DESCRIPTION

1. CHARACTER

The Precision Approach Path Indicator (PAPI) Building (NASA Inventory #55) was located on the east side, in a curve in the access road, of Runway 17/35. Supported by a concrete pad, this control building originally featured two prefabricated metal units. The primary unit is no longer extant. A small, locker-type unit housing electrical equipment remains in the southeast corner. This unit is painted with a red and white checkerboard pattern. An electrical generator and transformer are located to the east of the building.

The PAPI Control Building was used to control the PAPI light arrays located within the overruns at each end of Runway 17/35, the east end of Runway 23/05, and the north end of Runway 20/02. PAPI is a system of lights arranged to provide visual descent guidance information during the orbiter’s approach to the runway. The PAPI array is installed at the center of the runway and adjusts to allow for a glide slope of 16 to 21 degrees and is used as the outer glide slope reference. In good visibility conditions, the arrays can be used at ranges up to five miles by day and twenty miles by night.

The original PAPI arrays were replaced ca. 2005 with the current PAPI arrays, manufactured by the Barrel Lighting Company in England. Located equidistant, the four individual units are housed in metal light housing assemblies mounted on three metal legs supported by a concrete pad. The housings are painted yellow. Each light unit consists of three high-intensity, 200 watt 6.6 Amp incandescent lamps, anodized aluminum reflectors, red color filters to split the beam, and precision-ground lenses.
2. CONDITION OF FABRIC

When documented in March 2012, the Precision Approach Path Indicator (PAPI) Control Building had been abandoned for over six months but was in fair condition. The interior equipment had been removed and the exterior was showing signs of neglect due to the harsh desert environment, which requires that facilities are constantly maintained and repaired due to shifting sands, flash floods, and extreme temperature variations. The primary prefabricated metal unit had been removed.

B. CONSTRUCTION

The PAPI Control Building featured prefabricated metal buildings on a concrete pad.

C. MECHANICAL/OPERATION

The PAPI Control Building featured electricity to power interior lights and electronic navigational equipment.
PART III. SOURCES OF INFORMATION

A. ENGINEERING PLANS AND DRAWINGS

There are no known engineering plans or drawings of the PAPI Control Building.

B. INTERVIEWS

The following NASA and WSMR employees were interviewed for this documentation.

Robert E. Mitchell, WSTF Manager, September 2011.

Frank Offutt, WSSH Manager, September 2011.

Timothy Davis, WSTF Historic Preservation Officer, September 2011 and March 2012.

Bill Godby, WSMR Historic Preservation Officer, September 2011.

Doyle Piland, WSMR Museum Archivist, September 2011.

C. BIBLIOGRAPHY

Bergenson, Paul. “Jack (John Knudson) Northrop.” Published online in 2003 at website

D. LIKELY SOURCES NOT YET INVESTIGATED
Research was conducted at WSSH and WSTF using primary and secondary sources. Sources that were not investigated that may contain secondary information are archived at NASA’s Lyndon B. Johnson Space Center in Houston, Texas.

Additional oral history interviews with other engineers and technicians could also prove useful.
PART IV. PROJECT INFORMATION

In 2011-2012, New South Associates (NSA), under contract with InoMedic Health Applications, LLC (IHA) of Kennedy Space Center, Florida, and in coordination with NASA and the U.S. Army, conducted background research and a historic architecture survey of resources at the NASA WSSH. The survey included the documentation and evaluation for NRHP eligibility for seventy-two resources located in four distinct areas. Based on this research, NSA determined that no properties remain at WSSH from the period prior to NASA acquisition in 1963 except for the footprint of the packed gypsum Runway 17/35.

NSA recommended that the three NASA WSSH Runways and the Control Tower in Area 1 were individually eligible for listing in the NRHP and eligible as contributing resources to the “WSSH Shuttle Landing Facility District” under Criterion A and Criterion Consideration G for their association with the NASA SSP. None of the other sixty-eight inventoried properties were recommended individually eligible for listing in the NRHP due to lack of historical association with the NASA SSP or other historic contexts, lack of unique design or construction features, or insufficient integrity; however, nineteen of these properties, all of which lie within Area 1, were recommended as contributing resources to “WSSH Shuttle Landing Facility District,” even though they were not recommended individually eligible for the NRHP. The historic district contains a total of twenty-eight resources: twenty-three are contributing and five are non-contributing.

After formally ending the SSP on August 31, 2011, NASA disposed of the WSSH and released use of the property to the U.S. Army WSMR. The property transfer was a federal undertaking on federally-owned property and subject to compliance with Section 106 of the NRHP Act of 1966, as amended. The undertaking resulted in an Adverse Effect to the NRHP-eligible WSSH Shuttle

Landing Facility District. To mitigate the adverse effects, NASA completed HAER Level II documentation of the historic district and relocated the Control Tower to the WSMR Museum for conservation, exhibition, and public interpretation.

The mitigation plan was defined in a Memorandum of Agreement (MOA), executed between NASA, the U.S. Army, and the NM-SHPO in August 2012. The properties within the historic district were documented with large format photography in March 2012.
APPENDIX- LOCATION MAPS
Figure 1. Map of White Sands Military Reservation showing White Sands Space Harbor (Source: U.S. Army).
Figure 2. Map of WSSH showing location of the PAPI Control Building in Area 1, which delineates the NRHP boundaries of the WSSH Shuttle Landing Facility District (Base Map Source: NASA WSTF).
HISTORIC AMERICAN ENGINEERING RECORD
INDEX TO PHOTOGRAPHS

WHITE SANDS SPACE HARBOR AREA 1, PAPI CONTROL BUILDING
(Space Shuttle Landing Facility Area 1, Precision Approach Path Indicator Building)
White Sands Missile Range
East side of south end of Runway 17/35
White Sands vicinity
Doña Ana County
New Mexico

David Diener, Photographer
March 27-29, 2012

NM-28-N-1 VIEW OF GENERATOR AND PAPI CONTROL STATION LOOKING WEST, LOCATED ALONG ACCESS ROAD ON EAST SIDE OF RUNWAY 17/35 AT SOUTH END.
LEGEND

- **A**: NAV WIND MAST
- **B**: NAV BEACON
- **C**: NAV LIGHT
- **D**: NAV LIGHT TRAILER
- **E**: MARK ZONE LIGHT
- **F**: MARK ZONE LENS
- **G**: PANEL ZONE LIGHT
- **H**: PANEL ZONE LENS
- **I**: BLUE GREEN TL 30 LIGHT
- **J**: AMBER
- **K**: RED/YELLOW
- **L**: FIRE PREVENTION ACRE
- **M**: UNKNOWN

Runway 02, 05, 17, 20, 23 & 35 Area Map

- **Area 1**
- **Area 2**
- **Area 3**
- **Area 4**

Photo Location

0 3000 6000 Feet